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Non-Gaussian statistics of anomalous diffusion: The DNA sequences of prokaryotes
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We adopt a non-Gaussian indicator to measure the deviation from Gaussian statistics of a diffusion process
generated by dichotomous fluctuations with infinite memory. We also make analytical predictions on the
transient behavior of the non-Gaussian indicator as well as on its stationary value. We then apply this non-
Gaussian analysis to the DNA sequences of prokaryotes adopting a theoretical model where the “DNA
dynamics” are assumed to be determined by the statistical superposition of two independent generators of
fluctuations: a generator of fluctuations with no correlation and a generator of fluctuations with infinite corre-
lation “time.” We study also the influence that the finite length of the observed sequences has on the
non-Gaussian statistics of diffusion. We find that these non-Gaussian effects are blurred by the joint action of
short-range fluctuation and sequence truncation. Nevertheless, under proper conditions, fulfilled by all the
DNA sequences of prokaryotes that have been examined, a non-Gaussian signature remains to signal the
correlated nature of the driving proce$S1063-651X98)11009-7

PACS numbgs): 87.10+e, 05.40+j, 33.15.Vb

[. INTRODUCTION incomplete time scale separation between the “macro-
scopic” diffusing variable and microscopic dynamics. Ac-
The pioneer work of Rahmdr] on liquid argon contains, cording to Ref.[3], we must imagine that there exist two
among many interesting statistical properties, the numericdevels: the macroscopic and the microscopic. For any random
evaluation of a non-Gaussian indicator, whose onephenomenon of interest there exists a variable responsible
dimensional version would read for its fluctuations that is closer to the microscopic level than
the variable being measured. For instance, the microscopic
~(x%(1) variable related to the measured position of a Brownian par-
o(t)= 3(x3)2 o @ ticle is the velocity. The microscopic variable corresponding
to the measured velocity is the acceleration and so on.
Rahman found that the intensity of this non-Gaussian indi- For any step closer to the microscopic level the nonlinear
cator vanishes on the initial condition, grows with increasingnature of dynamics becomes more significant. Moving in the
time, reaches a maximum, and then makes a slow regressié@verse direction, from the microscopic to the macroscopic
to zero fort tending to infinity. level, we see a suppression of the effects of nonlinearity.
Is the result found by Rahman universal? To address thi§hus, if we move from the level of acceleration to that of
issue we consider another example, derived again fronyelocity, the suppression of microscopic nonlinearity is
molecular-dynamics simulation, but concerning the muctiuantified by the formulg3]
more complex case of binary alloys quenched into glassy
states. This is the more recent work by Miyagawa and Hi- G=QWg'. 2

watari [2]. These authors find that in the glassy state the ) _
non-Gaussian indicatorr(t) after reaching a maximum Here G represents the strength of the nonlinearity on the

shows no sign of regressing to zero. There is a striking difVelocity level, () denotes the frequency of oscillation of the
ference, therefore, with the earlier result of RahrfilaNo- ~ t2gged particle in the cage of the surrounding particles, and
tice that the former casil] is an example of non-Gaussian W defines the strength of the microscopic nonlinearity,
behavior of a dynamical system with a time scale separatioR@mely, that of the level next to the velocity level, which is
between the macroscopic and the microscopic regimé,h_e t_empefrature-dep_endeny harmonic s_trength of the potential
whereas the lattei2] is the non-Gaussian behavior of a dy- Wlthln which the particle of interest oscillates. The parameter
namical system with no time scale separation. In this pape¥ defines the strength of the memory
we explore the consequence of this lack of time scale sepa-
ration using a simple model and the results obtained are
shown to result in non-Gaussian effects even more intense
than those found in quenched glas§2k

What are the origins of non-Gaussian properties? Accordwhere 1I' denotes the relaxation time of the center of the
ing to the perspective afforded by the general discussion ofage.
Ref.[3], non-Gaussianicity is a consequence of microscopic This theoretical prediction suggests that the strength of
nonlinearity and, at the same time, of memory, namely, of amonlinearity, and thus of non-Gaussian behavior, transmitted
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from a given level to the next level closer to the macroscopiaynamics is strongly non-Gaussian and the equilibrium value
world, becomes larger and larger with increasing memory. Irof the corresponding kurtosis is
the case of an infinitely long memory, the non-Gaussian in-

dicator given by Eq(1), as we shall see, becomes infinitely . (£2)? w4
large, thereby implying technical problems in recording it. ngi=1-3— 21—3W=—2- (7)
For this reason, we adopt another form of non-Gaussian in- (€
dicator This is the measure of the microscopic statis{fitdCROS)

(X¥(1))2 of the system. We want to explore the case of infinite

n(t)=1-3 , (4) memory, so we must make a proper choice of the autocorre-

(x*() lation function

which is related to Rahman'’s indicator by ()= (£(0)&(1)) @
£ = - .
- (1) - (&)
T

A convenient choice is

In Sec. Il we shall see that in the case of infinite memory
n(t) tends to the value of 1 and se(t) tends to infinity. ()=
Thus we find it more convenient to use the kurtogid) ¢ (AVA 1 1)B’
rather than Rahman’s measure of non-Gaussianig(ty.

The meaning of this result is that the infinite memory of awith the power-law index in the interval
dichotomous fluctuation results in an infinite non-Gaussian
strength(if Rahman’s indicator is adoptedThe DNA se- 0<B<1. (10
quences offer an interesting example of dichotomous fluctua-
tions with infinite memory. However, the DNA sequencesThis choice makes the autocorrelation function nonintegrable
aretruncatedsingle trajectories and this is a reason why inor, equivalently, the microscopic time scale become infinite
Sec. lll we discuss the influence exerted on non-Gaussiawnhile fulfilling the normalization constraind (0)=1.
statistics by the finite length of the sequences under investi- We now assess the statistical properties of the variable
gation. The long-range correlations of prokaryotes are als@t has been showf¥] that the corresponding diffusion pro-
perturbed by uncorrelated fluctuations and for this reason weess becomes equivalent to a truncatedvylerocess,
devote Sec. IV to the study of the effects produced on nonnamely, a process whose distribution function is described
Gaussian statistics by the joint action of short-range fluctuaby a Levy distribution whose tails have been eliminated.
tions and of the finite length of the sequences under study.This is a diffusion process with a finite propagation front.

Section V is devoted to establishing the statistical signifi-The probability distribution at distancés|>W?t vanishes
cance of the results obtained in this paper. The content aind the population of the missing tail concentrates on the
this section aims at the very important purpose of explainingront thereby results in two peaks. A very accurate represen-

why the generalization of the earlier work of RE3J, which  tation of the probability distributiof(x,t) is given by
in turn is an extension of that of Rahman, finds a useful

application in the field of DNA sequences. D (1)
P(x,t)=P_(x,1)®(Wt—|x|)+ Té(Wt— [x]),

Il. THEORY FOR THE CASE OF INFINITE MEMORY (11

(€)

In this paper we go beyond the limits of the time-scale
separation with a specific picture in mind where the macro
scopic variable is th@ositionand the corresponding micro-
scopic variable is thgelocity. In the case of DNA sequences
this means position and velocity in the sense specified in Sec.
IV. Let us examine a microscopic condition where the de- . . .
parture from Gaussianicity is asplarge as possible and stuog'd the par_ametér is defined in terms of the parameters of
how these statistics are transmitted to the next level, closer t e fluctuation process as
the macroscopic world, in the specific case when there is no 1AW
time-scale separation between levels. With this ideal condi- b= BB +1) _ (13)
tion in mind we study the diffusion process 25"( 77(32 ))F(ﬂ+2)

where® is the Heaviside step functio®, is the Dirac delta
tunction, P, (x,t) is the inverse Fourier transform of

PL(k,t)=e PP (12)

x=&(1), (6)

Equation(11) is the macroscopic statistidhACROS) of
wherex is the position variable and is a dichotomous sto- the systemP(x,t) is not Gaussian as a consequence of the
chastic process, namely, a stochastic velocity variable withack of a finite microscopic time scale.
only two possible values W. The two values are set equally  This picture makes it possible to solve the problem of the
probable to make the diffusion process unbiased. The choidéme evolution of the kurtosig(t). From Eq.(11) we imme-
of a dichotomous fluctuation means that the “microscopic” diately find
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(x®"(t))= f X2PL (X, ) dX+t2"D (1), (14
In the time asymptotic limit, from Eq.9), we obtain
D (t)=At"~ (15)

Using the time asymptotic properties of théwedistribu-
tions [5], we obtain, using Eqs(12) and (13) and setting
W=1,

ot
PL(X,t)——|X|B+2, (16)
with ¢ given by
A +1
_ B(IZS’ ) _ 17

Thus, from Eq.(14) we obtain the approximated expres-

sions
2c
(P(t))=| A+ m)t2 A (18)
and
2c
(x*(t))=| A+ —B)t“ B, (19
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limiting case of 3=0, the transition becomes so slow as to
never depart from the initial dichotomous statistics. This is
expected on the basis of the following simple argument: We
know that atB=0 the resulting diffusion process is essen-
tially ballistic, thereby implying

(x3(t)) =W?t2 (22
and
(x4(t))y=wW't?, (23)
so that, consequently,
n(t)=-2. (24

What about the casg@>1? In this case a finite micro-
scopic time scale is recovered since the time integral of the
correlation function is finite. Consequently, we expect that
the standard condition detected by Rahman yeardq Apis
recovered. After a transient regime, corresponding to a time
scale where the process of molecular collisions can be per-
ceived, the system must reach the regime of conventional
diffusion, thereby implying that the Gaussian statistics is re-
covered, with kurtosigy(t)=0.

To check the validity of these theoretical predictions we
made a numerical calculation based on the average over a
large number of trajectories derived from a very extended
single trajectory, which in turn is generated by means of a
stochastic generatd#]. The method used if4] is essen-

As a consequence, we make the following prediction for thdially a method to produce a dichotomous fluctuatiowith

kurtosis in the time-asymptotic limit:

n(t)=1—c,t™", (20)
with
3| A+ —12_Cﬁ)2
CWE—ZC. (21)
A*m)

In conclusion, using the theory ¢#], we predict the long-
time limit kurtosis when the physical conditidt0) applies,

a stationary correlation function corresponding to that of Eq.
(9). The adoption of a deterministic genera6+8] produc-
ing the same stationary correlation function would lead to the
same result: The advantage of using the stochastic generator
is mainly due to the higher computational accuracy and
speed. Note that the distinct trajectories, on which the aver-
aging is carried out, are derived from the single but extended
trajectory, shifting the initial condition. This method, in prin-
ciple, aims at realizing an ensemble virtually equivalent to an
equilibrium Gibbs ensemblg/].

The results of this numerical calculation are illustrated in
Fig. 1, which refers to the time evolution gf{(t)=1— 7(t)
as well as ofyg(t). Note that the results of the cases, (b),

namely, in the case of infinite memory. On the other handand (c) of Fig. 1, corresponding to three distinct values of

we know that the initial value of the kurtosis must be?,
because at very short times the statisticx afre dictated by
& and this variable in turn must fulfill the conditidi@). As-

B<1, arein a good qualitative agreement with the prediction
of Eqg. (20). The results of Fig. @), with 8=1.5, show the
regression to the Gaussian statistics, corresponding to the

suming that the time evolution of the kurtosis does not un-prediction of the pioneer work of Rahméh]. We see that
dergo any abrupt change, we conclude that the kurtosis ibefore regressing to the prediction of Gaussian statistics the

creases from the initial value of 2 and, monotonically

kurtosis overshoots the valugt) =0. This overshooting re-

increasing, tends to the time asymptotic value of 1. We noteults in a pronounced maximum, and the birth of a maxi-

that the resulting behavior is reminiscent of Réfl, thereby

mum, as we shall see, is an interesting property produced

suggesting that the lack of a time scale separation provokeaso by the finite length of the explored sequences. To estab-
the breakdown of the regression of the kurtosis to 0, namelyljsh the significance of this latter property, however, it is
to the Gaussian behavior, and that, eventually, with increasiecessary to go through a deeper discussion of the method

ing time, stationary non-Gaussian statistics are reached.

adopted to derive a Gibbs ensemble from a single sequence.

We note from Eq(20) that the process of transition to the This will be discussed in Sec. lIl.

non-Gaussian regime predicted by the model of R&fbe-

What about the quantitative agreement between theory

comes slower and slower g approaches 0. This slowing and numerical experiments? We point out that at short times
down implies that the strongly non-Gaussian MICROSand at low values 0B, typically for values up to the order of
change slowly into the MACROS and, coming closer to the0.5, the quantitative agreement between theory and numeri-



PRE 58

@ ]

Vi)

0.1

10

t

100

1000

Ny

4 4
N4

(©)

4
s

acal

NON-GAUSSIAN STATISTICS OF ANOMALOLS . . .

(b)

3643

and larger with the decrease 8f As a consequence, the best
agreement between theory and numerical treatment is
reached at intermediate values®f In fact, we see that the
caseB=0.5 of Fig. Xb) yields an agreement between theory
and numerical treatment much better thanBat0.25 [Fig.

1(a)] as well as ap=0.75[Fig. 1(c)]. Notice that the statis-
tical analysis is made on sequences of finite length according
to the procedure described in Sec. Ill. The corresponding
numerical results, illustrated in Fig. 1, provide significant
signs of this tendency: The longer the sequence lefigthd
consequently the more accurate the statistics available, the
better the agreement between theoretical predictions and nu-
merical results.

Ill. FINITE-SIZE-INDUCED REGRESSION

1 10 100 1000 0 400 800 1200 TO GAUSSIAN BEHAVIOR

! t The qualitative discussion of Sec. IV refers to the statis-

FIG. 1. Time evolution of the non-Gaussian indicat@. The  tical analysis of DNA sequences. As we shall see, a DNA
value of s(t)=1— 5(t). » and thereforey are dimensionless vari- sequence can be imagined as a time series and the length of
ables. The calculation was made by adopting a stochastic generattitis sequence is finite. To prepare the ground for the discus-
[4] (t is the number of iterations of the generatresulting in the  sion of Sec. IV let us consider the case when the fluctuating
correlation function(9) with A~0.5. The dotted straight line is a variable&(t) is observed at the discrete timgsand the time
guideline indicating the theoretical slopeg, with =0.25. The  interval ist;  ;—t;=1. It must be pointed out that the calcu-
sequence length§ are as f°”°W31T7:3X_106_(daSh9d ling T |ation illustrated earlier refers precisely to this condition and
=10" (dot-dashed ling and T=2x10" (solid line). (b) Same as  that the adoption of the continuous-time representation has
(@, but with 5=0.5, A~0.25, a”YdT:_lOB_ (dashed ling T=3  pean an idealization made possible by the fact that we are
X 10° (dot-dashed ling and T=10 E;o“d ling). () Same as(%)é interested in the long-time limit. To make the earlier statis-
?&’;tﬁihﬁe J (|)|:)§ ngf’lgfgoﬁ dl Iingja(sdr;e'?ir::r?e-\l;c; uzt zi . tical analysis we used the possibility of computer generating

B : practically infinitely many and infinitely extended sequences
n(t). HereB=1.5,A~0.1, and the sequence lengths are as foIIows.{g(r)(ti)} Ideally a single sequence is obtained keeping

T=10" (dashed ling T=2x10" (dot-dashed ling and T=6 b G f ifini hanai
x 107 (solid line). Notice that in all the cases the dot-dashed lines, ixed and movingi from 1 to infinity. Changing from one

clearly visible only in casegc) and (d), refer to an intermediate 91VenTr to a differentr” is equivalent to moving from a given
case, with a statistics of intermediate accuracy. In cé@eand(b) ~ System to another system of the Gibbs ensemble. Therefore,

the dot-dashed lines virtually overlap the dashed lines. {£(t;)} can be interpreted as a mathematical notation de-
fining this Gibbs ensemble. Since this set consists of infi-
cal calculations is very good. The agreement becomes wordditely many sequences and the length of any sequence is
at large values 0B, typically those of the order of 0.75. This infinite, we shall refer to it as ideal Gibbs ensemdiBE).
discrepancy is caused by the fact that the theoretical predic- Now let us select one of these infinitely many sequences
tion is asymptotic in time, whereas it takes a certain amoun@nd truncate it at a given timé. We denote this single,
of time for the system to reach the asymptotic regime. Thigruncated sequence with the name of sample sequS®e
time is estimated as the time it takes the correlation functiorf he challenging problem is now that of deducing the statis-
(9) to reach a time regime where its dependence on time is #cs of the IGE from the analysis of the SS. In principle, it is
genuine inverse power law. The resulting value possible to derive from the SS a sort of simulation of the
IGE. This is done as follows. The first system of the Gibbs
ensemble is the SS itself. The second is a new sequence
derived from the SS by shifting the time origin framto t..
guantifies how long it takes the correlation function to be-Thenth trajectory is obtained shifting the time origin fram
come an inverse power law. Consequently, in the range @ t,, and so on. Let us refer to this as the effective Gibbs
<B<1, the decrease @ produces a faster transition to the ensemblgEGE).
time-asymptotic regime, thereby making it possible to fulfill It is evident that forT—o there should be no essential
the prediction(20) within the explored time range. difference between the EGE and the IGE. This would make
It has to be pointed out that the rule according to whichredundant the adoption of the superscripto define the
the agreement between theoretical prediction and numeric&ibbs ensemble: A single sequence would contain the same
results is improved with the smaller values®fis not com-  statistical information as that afforded by any other trajectory
pletely true. In fact, with decreasing another important of the ensemble. Furthermore, it is evident that in the case of
property has to be taken into account. The lower the value ofrdinary diffusion the adoption of the EGE rather than of the
B, the more persistent the presence of ballistic peaks. A satGE would not affect the statistical analysis. In fact, when
isfactory numerical treatment would imply a significant in- the autocorrelation of Eq9) has a finite lifetimer [9] and
crease of the number of systems in the Gibbs ensemble. > r the adoption of the EGE rather than the IGE does not
this is kept fixed, the statistical inaccuracy becomes largeproduce any significant deviation from the original statistical

ttrocAl/ﬁIBl/(ﬁJr 1) (25)
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behavior. This is no longer expected to be the case when th
power-law index is in the intervall0) where 7=o0. In this % )
case, although the assumption of an equilibrium invariant™ |
measure is made, it takes an infinitely long time for the sys-
tem to regress to equilibrium. Consequently, we expect thai
the adoption of the EGE might produce a significant depar-
ture from the statistics of the IGE for any finite length of the & + [
SS: This length, in fact, cannot be as large as the correlatior
time 7, which is infinite in this case. 20 700 200 300 260 500
We are not aware of any theoretical treatment of this dif-
ficult issue, except for a work of Pergg al.[10] in whicha 5
detailed discussion is made of the uncertainty affecting the¥ -
local anomalous rescaling indéX(t) as a finite-size effect. .
We notice that that work rests on assuming the varighie t 100
be a correlated Gaussian noise, thereby implying no devia- _ ] i
tion from a Gaussian MACROS. Therefore, we cannot apply G- 2. Mean kurtosig ») as a function of time, over an en-
that analysis to the case under discussion in this paper. semble of 10.0(.) EGE'’s resulting from 1.000 independent smglg se-
As regards the discussion of this issue in the present cas?‘f/ences of finite lengtfT. The dotted line denotes the Gaussian
we essentially rest on computer simulation. A DNA se- evel (7(1))=0. (a? T=10000. In addition to the mean kurtosus,_

- g . A, denoted by the thick line resulting from a dense sequence of dia-
quencg is a single t.runcatEd tra.JeCtory' prgver, Wlt.hm themonds, we also plot the error bafdefining the width of the sau-
theor_etlcal perspective adopted in Rifl] th_ls_smgle traje(_:- sage mentioned in the texThe dashed line is the mean kurtosis of
tory Is assumed to have the same statistical prPPeTt'es f%Fsingle sequence witi=10". This case is expected to be a good
t_hose of a tr,aJeCtory generat_ed by a set o_f.determ'n'suc NOMaalization of the IGE, with a virtually vanishing error bér) Same
linear equations corresponding to a condition of weak chaogg a), hut with T=50 000. For the sake of clarity we plot only the
(or, equivalently, to a stochastic generator of long-range corgpper and bottom values of the error bars, thus producing the two

relations[4]). Thus we can produce as many SS's as we neegpjid lines around the mean kurtosis) Same agh), but with a
to establish to what extent the departure of the EGE statistigggarithmic rather than linear time axis. The calculation was made

from the IGE statistics depends on the SS considered. Wiy adopting a stochastic generafdi resulting in the correlation
consider 1000 independent truncated trajectories. We assodimction (9) with A~0.025 and3=0.5.

ate each SS with its own EGE and thus to its o). We

find a distribution of these curveg(t) and consequently we basis of these properties we are led to conclude that most of
are led to define the mean valge(t)). In addition to the the single constituents of the sausage are expected to share
mean value we also evaluate the standard deviakigt) the same behavior, namely, a growth to a maximum value
=[(7?(t))—(n(t))?]¥?, which measures the spreading above the Gaussian levéhe abscissa axisfollowed by a
about the mean value and thus the “error” affecting theregression to zero: a behavior reminiscent of that correspond-
evaluation ofz(t). ing to B>1 [see Fig. 1d)].

On the basis of the calculations illustrated in Fig. 2, as To some extent the effect found numerically in this paper,
well as of others that are not reported here for the sake obn the influence of the truncation at the tiMieon the statis-
brevity, we reach the following conclusion. For any finite tics of diffusion process, is similar to the influence that an
length T we generate a kind of bent “sausage” of the sameexternal fluctuation of intensitfp has on the statistics of
type as that illustrated in Fig. 2. The width of the sausagalichotomous fluctuations with the correlation functit®).
2A »(t) and the time at which the sausage reaches its maxithis problem has been discussed in earlier work of our group
mum level depend off. The larger theT the thinner the [12,13. It has been shown that, as an effect of the perturbing
resulting sausage and the longer the time at which the maxioise, at a given timé., a crossover takes place from the
mum value is reached. In Fig. 2 we denote by the dashed linglow decay regime to a faster, exponential-like, decay re-
the result of the same analysis applied to a sequence of gpme. The crossover timg is proportional toD ™~ ¢, wherea
large length as to provide results virtually equivalent to thoseés an index of the order of unity. If the kurtosis of these
corresponding to the IGE and so a sausage with virtually grocesses were observed, the resulting behavior would be
vanishing width and a maximum at infinite time. We seesimilar to that produced bg>1 [see Fig. 1d)]. On the basis
from Fig. 2 that at short times the sausage width is very thirof the numerical results we are inclined to believe that the
and the mean valugr(t)) coincides with the dashed curve. effect of using a finite sequence may be equivalent to intro-
At later times the sausage width increases, thereby making @ducing a disturbance of intensify«f (1/T), where the func-
possible for the single constituents of the sausage to signifiion f(1/T) is a slowly increasing function of its argument.
cantly depart from the mean valyey(t)). However, it is  In other words, increasing might have the effect of making
also evident that the single constituents of the average valube disturbance weaker. Note thaff k2,13 an average over
(n(t)) with high probability move within the sausage. We the natural Gibbs system was made, thereby producing single
note from Figs. &) and Zc) that the whole sausage, after mean values rather than a set of distinct mean values.
crossing the real axis at short times, and not only the mean It is evident that if the sausage is not thin enough it is not
value (5(t)), departs from the abscissa axis. After a finite possible to conclude that all the SS’s will produce a kurtosis
time interval, which we denote asr@n-Gaussian window with a maximum and a regression to Gaussian statistics
the sausage tends to include also the abscissa axis. On théthin the observation time. The bump is produced by the
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kurtosis overshooting the Gaussian plateau and regressing BNA, Buldyrev et al. [22] have adopted a generalization of
it after a given time. Thus it corresponds to a window ofthe Levy walk proposed in an earlier paper by Araugibal.
finite size within which the non-Gaussian nature of the ob{23]. The process is realized as follows: At thih step a
served process becomes ostensible. In other words, if thendom walker, in the case of an ordinarywevalk, makes
non-Gaussian window is not ostensible, the observation oh jump of sizel; forward or backward. Essentially the same
truncated sequences might generate the false impression thasult, except for the birth of a propagation front signaled by
the statistics are Gaussian, in conflict with the detection othe presence of peakd], is obtained by assuming that the
long-range correlation and with the observati@n that in ~ walker makes, in a time;, |; steps in the same direction.
such a case the statistics of the resulting diffusion procesBoth of these assumptions would conflict with the idea of
cannot be Gaussian. It is also convenient to notice that thkaving no correlations at short distances. For this reason, in a
length of the DNA sequences that are analyzed in the nexecent paper Buldyrest al.[22] assumed that a walker takes
section is of the same order as that corresponding to the birtéach ofl; steps in random directions, with a fixed bias prob-

of the non-Gaussian window in Fig. 2. ability
IV. NON-GAUSSIAN STATISTICS OF DNA SEQUENCES 1+e:
OF PROKARYOTES P,= 2 ] (27)
The statistical analysis of DNA sequences is carried out
assigning the valué=—1 to purines and&=1 to pyrim- t0 go forward and
idines[14,19 or vice versg11]. Then the DNA sequences
are conceived as the generators of fluctuations of the di- 1—¢
chotomous variable. After adopting this prescription the P_= 2 (28)
“dynamics” of DNA sequences become equivalent to the
diffusion process generated by to go backward, where; assumes the value-e or —e
randomly. We shall refer to this as the generalizedyle
N walk (GLW).
X(N)= 21 &. (26) Allegrini et al.[11,19 have used a model that they called
i

copying mistake magCMM). The CMM assumes that the
DNA sequence results from the randomly joint action of two
different prescriptions, one responsible for the long-range
correlations and the other of an uncorrelated random nature.
al'the probability of constructing the sequence with the

The ith position along the sequence can be thought of as
discrete time in a random walk process. Consequer(\)
can be regarded as being the position of a random walker

the discrete timeN. If the sequence is very long, we adopt . . L= .
. i : correlations-generating prescriptiongs and the probability
the continuous-time representation of H), and conse- h . ;
of constructing the sequence with the random law is 1

qu;instgavr\:epfg; elrjt?eestgf éﬁklfegzgﬁgé ;I to analyze the non- p.. The equivalence of the CMM and GLW is made evi-

The results of some earlier investigations in this fielddent by noticing that if the CMM is adopted the probabilities

[14,15,11,16—1P established the existence of Iong—rangeOf going forward and backward are
correlations, excluding the possibility that the paradigm of

ordinary Brownian motions is the correct one to account for P — 1*p, (29
+ = )

DNA statistics. Neither is the paradigm of fractional Brown- 2

ian motion. In fact, as shown ], a dichotomous fluctua-

tion with long-range correlations results in a distinctly non- _

Gaussian diffusion process: a truncatedvy erocess[4]. P :1+p0 (30)
The observation made by Arneoét al. [20] that the diffu- - 2

sion statistics in eukaryotes are essentially Gaussian in spite ) ) ) o . )

of the existence of long-range correlations forced the author©SPectively, thereby implying thatis identified withp, .

of this paper to develop a folding model that has the effect of It IS straightforward to sho21] that

decoupling statistics from dynami¢21]. This means that

statistics can be produced by a source distinct from that re- Dy (t)=(1— pﬁ)d)g(t)Jr p2d (1), (31

sponsible for the long-range fluctuations, thereby explaining

why the diffusion process can be approximately Gaussian iwhere ®(t) is the correlation function of the fast fluctua-

spite of the existence of long-range correlations. tions (a & function) and ® (t) is the long-range correlation
As far as the prokaryotes are concerned, different condief the biase(t). It is equally straightforward11] to show

tions apply and these, as we shall see, make it possible that Eq. (31) yields an expression of the second-moment

detect non-Gaussian statistics. Before addressing this issume evolution, which is the superposition of a term linear in

let us summarize the conclusions reached in literature on thiégme, corresponding to the prediction of ordinary Brownian

DNA sequences of prokaryotes. Two groups have indepermotion, and of a term faster than linear, corresponding to the

dently developed two seemingly distinct models, which, nev-anomalous diffusion. This means that the short-time dynam-

ertheless turn out to be equivalent from a statistical viewdics is dominated by ordinary diffusion, while the long-time

point. Let us mention the earlier model first. In a recentdynamics, if the DNA sequence is sufficiently large as to

paper, to interpret the long-range correlation in noncodingnake this observation possible, is dominated by anomalous
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FIG. 3. Functiony(t) for different realizations of the CMM,
with different values of p.: p.=1 (+), p:=0.5 (X), p.
=0.2 (*), andp,=0.002 (). Here T=10°. The parameteré\ o (b)
andg are the same as those[dfL]. This means thg8=0.67.A can
be derived from the numerical approach to the correlation function ; 4
of Eqg. (9) and turns out to be-10.

Wt

diffusion[11]. In other words, this model results in diffusion
processes that are indistinguishable from standard Brownian
motion at short times and are expected to exhibit anomalous 1.5 h 7
diffusion at long times.
What about the time evolution of the kurtosj$t) in this 2 T RN |
case? Figure 3 gives a satisfactory answer to this question. 1 10 1(t’°
We see, in fact, that whep, is so large as to have a DNA
sequence dominated by the prescription with long-range cor- FIG. 4. Time evolution of the non-Gaussian indicatgft).
relation, 5(t) steadily increases from(1)=—2 towardsthe (a The complete genome of the human Cytomegalovirus
value 1. However, before reaching this maximum non-(HEHCMVCG) (+) and the CMM sequenceX(). The two se-
Gaussian value, the finite-sequence effect emerges under tAgences share the lengih=229 354. The lengti” of the DNA
form of a regression to the Gaussian statistics. At smallepeduence is the number of nucleotides in each of the two strands
values ofp,, another interesting effect appears. The short/base pairsbps]. The CMM sequence is given the parameper
time increase ofy(t) becomes much faster, a sort of tempo- = 1/9: Which is the same value as that adopted in REf] to fit
rary Gaussian plateau is reached, and then the kurtosis recojfferent statistical properties of the same DNA sequefineSeg-

ers the same behavior as that corresponding to higher vaIu%réent of Escherichia CofECOTSH (+) and the CMM sequence

of ps. X). The two sequences share the lengtk91 430 bps. The
The qualitative explanation of this seemingly complex be—CMNI sequence is given the paramefgr=1/10.
havior is straightforward: At short times the time evolution
of the kurtosis is dominated by ordinary Brownian diffusion. examples of real DNA sequences. The striking discovery is
Consequently, a fast transition to the Gaussian level takehiat of an impressive similarity between the non-Gaussian
place. Upon further passage of time, as noticed earlier, theindow of the real DNA sequences and that of the artificial
effect of long-range correlations becomes predominant an®NA sequences generated by the CMM. The agreement is
the kurtosis leaves the Gaussian plateau and “tries” to reacljood at both the qualitative and quantitative levels. On the
the plateau corresponding to truncatedy statistics. Thisis  basis of the theoretical discussion of Sec. II, we can also
prevented from occurring by the fact that the sequence igxpress this result in a slightly different form. The debate on
finite and in fact, at later times, a regression to a Gaussiathe existence or nonexistence of long-range correlations in
MACROS takes place. This behavior leaves a signatare pNA sequences is obscured in part by the fact that the non-
bump on the Gaussian leyelf the kurtosis evolution curve. Gayssian statistics of the diffusion process resulting from the
Of course, in the limiting casp.=0, only ordinary Brown-  |5nq.range correlations is blurred by the truncation of the
ian diffusion would be present and no departure from Gausssequences. As we have seen, if the width of the sausage is
lan statistics would take p'?Ce- . . too large, a large portion of its constituents might not result
In other words, at short times the non-Gaussian propertieg, “plateau plus bump” signature. The fact that the major-

are overcome by the uncorrelated fluctuations and at Iong of the DNA sequences of prokaryotes examined by us
times by the finite-sequence effects. The bump represents( e longest ones availablesults in this effect suggests that

different kind of non-Gaussian windof24], through which
one can perceive the statistics that would show up in théhe DNA sequences of pr(‘?_karyotes can ?e regarde(_j as _the
single constituents of an “ideal sausage” whose width is

ideal case of no perturbation. . i e
What about real DNA sequences of prokaryotes? The arsmall enough to force all its constituents to exhibit the same
swer to this question is given by Fig. 4, which shows twoPlatéau plus bump signature.

1000 10000
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V. STATISTICAL, PHYSICAL, erence to the literature establishing that this is a superdiffu-
AND BIOLOGICAL MEANING sional proces$10,11,14—-22is made, the reader can easily
AND IMPORTANCE OF THE RESULTS OBTAINED understand that the natural question is raised of whether or

not this diffusion process is also non-Gaussian. Unfortu-
This paper yields some interesting additions to the recemately, even if there is a widely accepted conviction that the
discoveries on the long-range correlations in DNA sequencestudy of DNA sequences is equivalent to that of anomalous
by solving a problem of interest for diffusion processes indiffusion processes of condensed matter, a link between this
condensed mattdB]. Let us see why. First of all, we note subject and that of Ref3], it is well known that these se-
that according to Ref.3], a close connection exists between quences are finite. Furthermore, any DNA sequence is a
memory and non-Gaussian statistics at the macroscopigingle trajectory and no recourse can be made to the concept
level. We know from[3] that if a finite microscopic time of Gibbs ensemble. It is possible to derive a sort of effective
scale exists, the non-Gaussian effects at the macroscopigibbs ensemble from a DNA sequence, conceived as a single
level can only be temporary and Gaussian statistics are rdrajectory, by using different sites as departure points of a set
covered when the stationary regime is reached. We can prolof new trajectories. This way of generating a Gibbs en-
ably persuade the reader, who may not have the time to geemble, however, produces results that are strongly influ-
through the theoretical arguments of Rd], to accept the enced by the finite length of the DNA sequence if the DNA
golden rule of Eq(2) by remarking that this is nothing but sequence is characterized by an infinite correlation “time.”
another manifestation of the celebrated central limit theorenT his is the main reason why the non-Gaussian indicator can-
[25]. not reach its maximum value and a sort of regression to
This perspective is challenged by the phenomenon of susaussian statistics is produced.
perdiffusion, namely, a diffusion faster than ordinary Brown-  This is the second important result of this paper. To con-
ian diffusion, invoked to account for the statistical propertiesvince the reader that it is really important, we have to estab-
of the DNA sequences with long-range correlationslish to what extent the detection of this maximum as a
[10,11,14-22 This is so because a diffusion process wheremethod of statistical analysis of a single and finite sequence
the second moment of the diffusing variable increases iris reliable. To do that we generated 1000 independent se-
time more quickly than in the case of ordinary Brownian quences by means of the stochastic generator that, according
motion (see, for example, Reff4]) implies a fluctuation with  to the earlier wor4], results in superdiffusion. It is a plau-
an infinite correlation time. According to the perspective ofsible conjecture to imagine the kurtosis time evolution to be
Ref.[3], the resulting non-Gaussian effect should be infinitea fluctuating function of the finite sequence considered. This
as well. This paper establishes in Sec. Il that it is preciselyaises a legitimate doubt on the general validity of the second
so. This is so much so that the conventional Rahman norresult of this paper, expressed by the following question: Do
Gaussian indicator, applied to the diffusion process generthese fluctuations allow a single and finite sequence to pro-
ated by a dichotomous fluctuation with the correlation func-duce a kurtosis time evolution without the non-Gaussian
tion of Eq. (9), would diverge in the time asymptotic limit. bump? It is evident that an affirmative answer to this ques-
For this reason we have been forced to adopt the nortion would make questionable the adoption of our method of
Gaussian indicator of Ed4). stastistical analysis. The second result of this paper is there-
Not only do we establish that the non-Gaussianicity before made really important by the discovery, made in Sec.
comes infinite, we also discover how this unusual conditiorll, that each and every sequence, with a sufficiently large
is reached in time. This is given by the analytical predictionlength, must be characterized by a non-Gaussian window.
of Eq. (20), which is qualitatively corroborated by numerical This is proved by Figs.®) and Zc), showing that the whole
results. We also explain why there are significant quantita~sausage,” and so all the single trajectories contributing to
tive deviations of the numerical results from the theoreticatthe sausage width, distinctly departs from the Gaussian pla-
prediction. teau within a finite time interval. This means that each and
All this has to be regarded as the first important result ofevery single sequence, produced by the same stochastic gen-
this paper. It has been made possible by the adoption of therator, with the same length as those studied in Sec¢thd
theory of Ref.[4], which in turn addresses the important DNA sequences examined in Sec. IV have the same lg¢ngth
issue of how to derive Ly statistics, a diffusion process are expected to result in a non-Gaussian window if their
with infinite moments, from within a treatment based on thecorrelation length is infinite.
numerical determination of moments. The wise use of the Finally, Sec. IV illustrates the third result of this paper.
information provided by the lwey statistics is made possible This last result, as far as the project of a technique of statis-
by the fact that the process under observation is essentiallytacal analysis of DNA sequences is concerned, is the main
truncated Ley process. result of this paper. Adopting as an artificial DNA sequence
The difficulty for the reader to overcome to appreciate thethat generated by the theoretical model developed by us in
significance of the second result of this paper is that of lookour earlier work[11,19, the CMM model, we make about
ing at the DNA sequences as dichotomous time fluctuationthe time evolution of the non-Gaussian indicator the follow-
according to the perspective established by R&5]. The ing predictions. The non-Gaussian indicator is expected to
position of a site along the DNA has to be identified with increase very quickly from the initial value of 2 to the
time and the value assigned to a given éitigher—1 or+1,  vanishing value of the Gaussian plateau. We also expect that
according to whether the site is occupied by a purine or after a temporary stay in this Gaussian plateau a transition to
pyrimidine) is the value of the fluctuation at that time. the bump regime occurs. This means a further increase of the
Once this correspondence is established and the due refon-Gaussian indicator with a regression to a vanishing
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value that prevents the non-Gaussian indicator from reachinglization of the Rahman’s pioneer wofk] to the case of
the top value of 1. All these expectations have been satisfagafinite memory.
torily confirmed by our statistical analysis of real DNA se-

guences of prokaryotes, with a quantitative as well as a

gualitative agreement between the theoretical predictions and

the results of the analysis of real data. Therefore, we con- P.A. thanks the INFM for partial support of this work and
clude this paper by pointing out that the original convictionB.J.W. thanks the Office of Naval Research. We thank Dr.
[11] that the CMM is a good model for prokaryotes is con- Bruno Zambon for useful comments on an earlier version of
firmed beyond the original expectation. To reach this importhis manuscript. We are also grateful to Professor Marcello
tant result we had to solve many other subsidiary problemsBuiatti for his help and guidance throughout the biological
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non-Gaussian window and that discussed in Sec. Ill. In Sec. IlI
we defined the non-Gaussian window as the interval of time
between the uncertainty sausage overshooting the condition
(n(t))=0 and the approximate time at which the uncertainty
sausage starts steadily including this Gaussian condition. Here
the non-Gaussian window is a property of the single trajectory,
rather than a property of the averagg(t)), as enforced by the
nature of the DNA sequences. The non-Gaussian window
could have been determined in the same way as in Sec. Il only
in the case of the computer generated DNA sequences of Figs.
3 and 4. However, this would have required an exceedingly
long computational time. The computer time necessary to
evaluate the uncertainty sausage depends essentially on the
position of the maximum of the functiamy(t)). The larger the
time at which this function gets its maximum, the larger the
corresponding computational time. On the other hand, the time
position of this maximum is determined by the value of the
parameteA of Eq. (9). As regards the results of cas@s and

(b) of Fig. 2, the time position of the maximum, befote
=200 andt=500, respectively, was determined by adopting
the valueA~0.025. This choice turned out to be compatible
with a reasonably short computational time, thereby making it
possible to produce the uncertainty sausage of Fig. 2. The
CMM sequences resulting in the non-Gaussian indicator illus-
trated in Figs. 3 and 4 rest on larger valuesToand A. This
choice generates maxima between1000 andt=100 000,
namely, conditions comparable to those of the real DNA se-
qguences of Fig. 4. Thus this choice AfandT made it impos-
sible to evaluate the uncertainty sausage within a reasonably
short computational time. In conclusion, to save computational
time, we have examined only a single sequence also in the case
when this can be computer generated. As a consequence, we
do not know whether or not the real DNA sequences examined
in Fig. 4 produce a non-Gaussian indicatg(t) lying within

the uncertainty sausage. Further computational work should be
done to establish this important property.

[22] S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K. Peng, M. [25] S.-K. Ma, Statistical Mechanic§World Scientific, Philadel-

Simons, and H. E. Stanley, Phys. Rev4E 4514(1993.

phia, 1985, p. 198.



